• 大数据教程——从大数据上分析2018年AI的发展趋势
    随着大数据和人工智能的广泛应用,这些新兴技术的庞大影响力遍及全球经济,如今的投资者和企业家们迫切希望在2018年取得这些创新成果,正在开始确定将要定义这些技术创新的主要趋势。那么,当今的人工智能和大数据热潮背后的推动力究竟是什么呢?渴望投资于这一现象的投资者能做出什么样的准备呢?
    63
  • 大数据教程——简介大数据的发展
    69
  • 大数据教程——物联网将如何改变大数据分析
    数据一直在业务中发挥关键作用,但大数据分析的兴起,大量存储的信息可以在计算上挖掘出来,揭示有价值的见解、模式和趋势,使其在现代商业领域几乎不可或缺。收集和分析这些数据并将其转化为可行的结果的能力是成功的关键。
    68
  • 大数据教程——什么是数据可视化?
    数据可视化,它是创造性设计美学和严谨的工程科学的卓越产物。它的美丽令人向往,而它的繁杂又使其蒙上层神秘的面纱。本文将尝试从数据可视化的定义、意义、应用三个方面讲述和解释关于数据可视化的“what、why、how”的三个问题。
    74
  • 大数据教程——如何对零售大数据进行分析应用
    要建立数学模型要解决三个问题,首先是数据的量要达到一定的规模和质量;其实是用什么样的算法,如用时间序列还是回归或是人工智能算法;第三是“数据+算法”可以围绕什么业务场景,建立什么样的模型及参数。 中国零售业所面临的最具挑战的竞争,就是顾客和市场需求的纷繁复杂及其飘忽不定的变化。而零售企业成功乃至存活的关键,就是如何采取灵活多变且机智的应对行动,这就要求管理者要能够顺应市场的变化、快速发现并处理问题,并且及时的制定解决方案和抓住市场机会。因此,基于数据和事实,质量更高、速度更快、成本更低的决策显现了前所未有的重要性。
    66
  • 大数据教程——学数据分析该读什么书
    HeadFirst类的书籍,一向浅显易懂形象生动,可以对分析概念有个全面的认知。——Simon 谁说菜鸟不会数据分析 :不仅讲解了一些常见的分析技巧,并附带excel的一些知识及数据分析再公司中所处的位置,对职场了解亦有一定帮助。
    41
  • 大数据教程——数据分析需要权衡哪些要素?
    52
  • 大数据教程——如何解决数据质量问题
    为了能够系统化地、高效地解决出现的任何问题,我们必须学会将这些问题分而治之。毕竟,知己知彼方是解决问题的首重至要。由此,我们才会发现解决之道就在其中。而对于提高数据质量同样适用:每一个解决问题的方法都有不同的阶段与角度。 当一个数据质量改进程序在启动时,仅知道数据库中有多少错误计算或重复录入是远远不够的。不止于此,我们还需要知道不同类型的错误在收集的资源中是如何分配的。
    48

页面